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Heat Conduction in Two-Dimensional Nonlinear
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The divergence of the heat conductivity in the thermodynamic limit is
investigated in 2d-lattice models of anharmonic solids with nearest-neighbour
interaction from single-well potentials. Two different numerical approaches
based on nonequilibrium and equilibrium simulations provide consistent indica-
tions in favour of a logarithmic divergence in ``ergodic'', i.e., highly chaotic,
dynamical regimes. Analytical estimates obtained in the framework of linear-
response theory confirm this finding, while tracing back the physical origin of
this anomalous transport to the slow diffusion of the energy of hydrodynamic
modes. Finally, numerical evidence of superanomalous transport is given in the
weakly chaotic regime, typically observed below a threshold value of the energy
density.

KEY WORDS: Heat conduction; Green�Kubo formula; strong stochasticity
threshold.

1. INTRODUCTION

The study of heat conduction in models of insulating solids is a long-stand-
ing and debated problem. In 1929 R. Peierls provided the first convincing
theoretical explanation of this phenomenon, relying upon the hypothesis
that lattice vibrations responsible for heat transport in insulating solids can
be described as a diluted gas of quantum quasi-particles, the phonons.(1)

Peierls' model extends Boltzmann's kinetic theory of the classical ideal gas
to the phonon gas, by substituting collisions in real space with Umklapp
processes in momentum space. Due to the quantum character of this
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approach, Umklapp processes were theoretically justified as a perturbative
effect, epitomizing the scattering of phonons originated by intrinsic features
of real solids: disorder and nonlinearity. The main achievement of Peierls'
theory is the prediction of the proportionality relation between the thermal
conductivity } and the specific heat at constant volume cV :

}(T )= 1
3cV (T ) v* (1)

where v and * are the average velocity and the mean free path of phonons,
respectively. Using Debye's formula, the dependence of } on the tem-
perature T was found to agree with experimental observations in the low-
temperature regime. Nonetheless, at least in the high temperature regime,
there is no reason why a purely, classical model of an insulating solid
should not reproduce the correct behavior of }(T ) and Fourier law

J9 (x� )=}{9 T (x� ) (2)

where J9 (x� ) and T (x� ) are the heat flux and the temperature field, respec-
tively. To our knowledge, the first attempt of its theoretical justification on
the basis of a microscopic model of a solid was made in a seminal paper
by Rieder, Lebowitz and Lieb.(2) They considered a chain of N coupled
harmonic oscillators in contact at its extrema with stochastic thermal baths
at different temperatures. They prove that in this simple model of a purely
harmonic solid thermal conductivity diverges in the thermodynamoc limit
as }(N )tN. Consistently, the temperature profile in the bulk of the chain
is flat. The physical interpretation of these results is that harmonic lattice
waves, i.e., Fourier modes, freely propagate through the lattice, thus con-
tributing to a ballistic rather than diffusive heat transport. The same result
was obtained numerically for another integrable model, the 1d Toda lat-
tice.(3) Its normal modes, the so-called Toda solitons, are nonlinear waves
localized in space and also freely propagating through the lattice. More
generally, any integrable Hamiltonian system is expected to be charac-
terized by anomalous transport properties since its normal modes, in the
perspective of kinetic theory, are equivalent to a ``gas'' of non-interacting
free particles. Following Peierls, the addition of generic disorder and non-
linearity should overtake these anomalies by introducing effective diffusive
behavior. Numerical(4) and analytical(5) estimates performed for the mass-
disordered harmonic chain still yield anomalous transport, }(N )tN 1�2,
although the temperature gradient was found to be finite.(6) Accordingly,
disorder is not sufficient to guarantee normal transport properties. It remains
nonlinearity, that since the 70's has been widely studied also as a source of
chaotic behavior. In fact, despite its deterministic nature, chaos was shown
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to yield good statistical properties, namely ergodic behavior, for most of the
thermodinamically relevant observables. Accordingly, many attempts were
made with models of chains of nonlinearly coupled oscillators, that did not
achieve convincing conclusions (e.g., see refs. 7, 8, and 9). Finally, Casati
et al.(10) proposed the ding-a-ling model that exhibits normal heat conduc-
tivity. It is worth mentioning that the same result has been confirmed one
decade later by Prosen and Robnik(11) for the ding-dong model��a variant
of the ding-a-ling one. The great merit of the former paper has been to
point out the possibility of obtaining normal conductivity in a nonlinear
dynamical model; the latter, thanks also to the increase of computational
facilities, has provided convincing evidence of this result by very careful
and time consuming numerical simulations. Anyway, in both cases strong
chaos has been argued to be the basic mechanism responsible for normal
transport properties. In this perspective, one could conjecture that the
doubtful results obtained for chaotic potentials, yielding interactions
smoother than elastic collisions could deserve extremely lengthy numerical
simulations before showing standard transport properties (e.g., see refs. 12
and 13).

Unfortunately, the explanation of the above mentioned results is quite
different. Both ding-models can be thought as interacting particles bounded
to a local, or substrate, potential. By substituting the elastic collisions��
responsible for the strong chaotic behavior of these models��with any non-
linear nearest-neighbour interaction potential, numerical evidence of finite
thermal conductivity is obtained (for instance, see ref. 14). Conversely, if
the substrate term is absent small wavenumber, i.e., hydrodynamic, modes
exhibit a peculiar slow relaxation.(15) This effect is a consequence of total
momentum conservation, that implies also the vanishing of the generalized
frequency |(k) in the limit of small wavenumber, k � 0, characterizing the
dispersion relation in presence of an acoustic band.(16)

When a substrate term is present the total momentum is no more
conserved and diffusion of the hydrodynamic mode energies is made possible
by the interaction with the local potential, that modifies the dispersion rela-
tion by lifting the acoustic band from zero.

This notwithstanding, it is not trivial that a purely deterministic
chaotic dynamics can give rise to an effective diffusive behavior. In general,
chaos alone is a necessary, but not sufficient ingredient for obtaining nor-
mal trasport properties.

Some progress in the understanding of transport properties in non-
linear lattices has been made recently by exploiting the analogy with the
mode-coupling theory, that applies to models of dense fluids rather than
diluted gases. Numerical simulations carried out for a 1d lattice with quar-
tic nonlinearity��the Fermi�Pasta�Ulam (FPU) ;-model��have shown a
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power law dependence of the thermal conductivity on the system size:
}tN :, with :=0.39\0.02.(16) This result was obtained for a chain in
contact with thermal baths and by equilibrium measurements of } based
on the Green�Kubo formula of linear response theory (for technical details,
see also Section 4). Taking advantage of the results reported in ref. 15,
it was possible to conclude that, even for strongly chaotic dynamics,
the amplitudes of low wavenumber modes evolve like weakly damped
stochastic harmonic oscillators, whose frequencies are renormalized w.r.t.
the standard harmonic component of the FPU ;-model by leading non-
linear terms.(17) On the other hand, large wavenumber modes behave like
fast variables, governed by a thermal behavior. This is the typical scheme
that applies to dense fluids in Fourier space. Self-consistent mode coupling
theory (SMT) (18, 19) allows one to determine the dependence of } on N
from the integral of the time-correlation function of the total heat flux,
yielding in the 1d case the power law

}tN 2�5 (3)

in very good agreement with numerics. This power-law has been recovered
also in many other models of nonlinearly coupled oscillators like the
diatomic Toda chain, (20, 21) the Lennard�Jones (LJ) 6�12-model and the
Morse potential.(22) All of these models share one common feature: they are
single-well confining potentials. Also in the light of the results recently
obtained in ref. 23, the scaling law (3), typical of this class of models, seems
to be directly related to this property. It is also worth stressing that, due
to its generality, SMT can be applied for determining the dependence of
transport coefficients on the system size in higher space dimensions. For
the class of models of interest in this paper, it predicts that } should
diverge logarithmically with N in 2d (see Section 4), while in 3d } is
normal, i.e., independent of N.

The aim of this paper is the numerical and analytical study of the
thermodynamic limit properties of thermal conductivity } in the 2d case,
by taking into account two examples of single-well confining potentials: the
FPU ; and the LJ (6�12)-models.

More precisely, in Section 2 we introduce the models and we also
discuss some general features of the simplified lattice representation of
anharmonic 2d solids used in this paper. In Section 3 we present the results
concerning the dependence of } on N obtained by two different numerical
approaches, based on two different definitions of }. An explicit derivation
of the analytical prediction of SMT is worked out in Section 4, where we
also discuss the presence of a superanomalous divergence of transport coef-
ficients in the weakly chaotic regime, that typically characterizes the above
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mentioned models for sufficiently small energy(24) (see also refs. 25 and 26).
Conclusions and perspectives are contained in Section 5.

2. MODELLING HEAT CONDUCTION IN 2d LATTICES

The great majority of the studies on heat conduction in anharmonic
lattices has been devoted to 1d systems. Too heavy numerical simulations
were the main limitation for large scale analysis of this problem in 2d. In
fact, only a few contributions have been worked out. For instance in ref. 27
the dependence of the thermal conductivity } on the temperature T is
studied in a 2d triangular lattice of unit mass atoms interacting via a LJ
6�12 potential. Numerical data are consistent with the expected classical
law }tT &1, while the dependence of } on the system size is not investigated.
An interesting contribution in this direction is the paper by Jackson and
Mistriotis.(12) The authors compare measurements of } in 1d and 2d
Fermi�Pasta�Ulam (FPU) lattices and they conclude that in both cases
there is no evidence that the transport coefficient is finite in the
thermodynamic limit. More recent and extended numerical simulations
performed for the 2d Toda-lattice(28) have been interpreted in favour of the
finiteness of } in this case.

As usual, numerical analysis alone without any piece of a theory can
hardly yield conclusive results. On the other hand, as already stressed in
ref. 12, the dependence of } on the system size cannot be adequately
described by Peierls' model: at least in the high temperature (i.e., classical)
limit the perturbative Umklapp processes cannot account for the genuine
nonlinear effects that characterize such a dependence.

The theoretical approach proposed in ref. 16 and careful numerical
analysis of 1d systems, (17, 29) provide a first coherent explanation of the
divergence of }(N ) in the thermodynamic limit.

In this paper we want to extend this study to 2d systems. For this
purpose, let us first describe the adopted lattice model of a homogeneous
2d solid. We consider a square lattice made of Nx_Ny equal mass (m)
atoms. The equilibrium positions of the atoms coincide with the lattice
sites, labelled by a pair of integer indices (i, j). Without loss of generality,
the lattice spacing a can be set equal to unit and the origin of the cartesian
reference frame can be fixed in such a way that 1<i<Nx and 1< j<Ny .
Accordingly, the 2d-vector of equilibrium position, r� 0

ij , coincides with (i, j).
The short-range character of interatomic forces in real solids is simplified
by assuming that the atoms interact by a nearest-neighbour confining
potential V(\), that depends on the relative displacement \ with respect to
the equilibrium distance. The natural ordering of the atoms induced by this
kind of local interaction allows to identify with the same couple of indices
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(i, j) the corresponding atom in any dynamical configuration. Specifically,
the model is described by the general Hamiltonian

H= :
Nx

i=1

:
Ny

j=1
_\ | p� ij |

2

2m ++V( |q� i+1j&q� ij | )+V( |q� ij+1&q� ij | )& (4)

where q� ij (t)=r� ij (t)&r� 0
ij , r� ij (t) is the instantaneous position vector of the

(i, j)-atom and p� ij (t) in the corresponding momentum vector. Without
prejudice of generality we set also m=1.

Since we are interested in studying the thermal conductivity } in this
2d model, we have also to define the relevant physical observables, namely
the temperature Tij and the heat flux J9 ij . Let us start from the local energy
density

h(r� , t)=:
i, j

h ij$(r� &r� ij ) (5)

where

hij =
1
2 | p� ij |

2+ 1
4 [V( |q� i+1j&q� ij | )+V( |q� ij&q� i&1j | )

+V( |q� ij+1&q� ij | )+V( |q� ij&q� ij&1| )] (6)

Assuming that local equilibrium holds, we obtain immediately a definition
of the local temperature Tij by applying the virial theorem:

Tij=� p (k)
ij

�hij

�p (k)
ij �=�q (k)

ij

�hij

�q (k)
ij � (7)

where k=x, y indicates either the x- or the y-component of the corre-
sponding vector variables. The formal definition of the time average symbol
is (v)=lim{ � �(1�{) �{

0 v dt.
For hamiltonian (4) one can use the simple expression

Tij=( p (x)2

ij )=( p ( y)2

ij ) =
( p (x)2

ij + p ( y)2

i, j )
2

(8)

The heat flux vector is implicitely defined by the continuity equation

h4 ij (t)+{9 } J9 ij (t)=0 (9)
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By rewriting this equation in Fourier space and retaining the leading
hydrodynamic contribution (i.e., by applying the large wavelenght limit)
one obtains an explicit expression for the components of J9

J (x)
ij =& 1

4a[ f xx
ij ( p (x)

ij + p (x)
i+1j)+ f yx

ij ( p ( y)
ij + p ( y)

i+1j)]
(10)

J ( y)
ij =& 1

4a[ f xy
ij ( p (x)

ij + p (x)
ij+1)+ f yy

ij ( p ( y)
ij + p ( y)

ij+1)]

where the components of the local vector forces are defined as follows

f xx
ij =&

�V[ |q� i+1j&q� ij |]
�q (x)

ij

f yx
ij = &

�V[|q� i+1j&q� ij |]
�q ( y)

ij

f xy
ij =&

�V[ |q� ij+1&q� ij |]
�q (x)

ij

f yy
ij =&

�V[|q� ij+1&q� ij |]
�q ( y)

ij

It is worth defining also the space-time average of the heat flux vector

(J9 )=�
� i, j J9 ij

NxNy � (11)

that will be widely used in the following sections.
Finally, since we want to investigate thermodynamic limit properties,

we should impose periodic boundary conditions ( pbc), that are the
standard choice for reducing as much as possible undesired boundary
effects on bulk properties.

3. MODELS AND NUMERICAL EXPERIMENTS

The numerical simulations that we are going to describe in this section
have been performed for two different single-well potentials:

V1(\)=
1
2

\2+
;
4

\4, Fermi�Pasta�Ulam ;-model (12)

V2(\)=
A

\12&
B
\6+

B2

4A
, Lennard�Jones 6�12-model (13)

The reasons for this twofold choice are the following:

�� analyzing heat tansport in the 2d version of the widely studied case
of potential V1 ;

1153Heat Conduction in Two-Dimensional Nonlinear Lattices



�� verifying the theoretical prediction (see next section) that nearest-
neighbour single-well nonlinear potentials exhibit the same kind of
dependence of }(N ) in the large N limit;

�� investigating the possible consequences on transport properties of
the slowing-down of relaxation below the so called Strong Stochasticity
Threshold, that was measured for potential V2 in ref. 24.

It is worth stressing that V1 does not contain any natural energy and
length scales; all numerical simulations with this potential have been per-
formed with ;=10&1 and with an integration time step 2t=10&2, that is
two orders of magnitude smaller than the minimum harmonic period
({min=?�- 2).

At variance with V1 , V2 is characterized by natural length and energy
scales, the equilibrium distance r0=(2A�B)1�6 and the well depth W=
B2�4A, respectively. In order to make the two models as close as possible
we have chosen the parameters A and B in such a way that the coefficients
of the second and fourth order terms of the Taylor series expansion of V2

around its minimum coincide with those of V1 , thus obtaining r0r25,
Wr8.6 and {min=?r4

0 �(6 - 2 B)r2.2. In numerical experiments we have
adopted a time step 2t=5 } 10&3, that guarantees a sufficient sampling of
the integration algorithm especially when strong nonlinearities are explored
by the dynamics.

Numerical measurements of the thermal conductivity } as a function
of the lattice size N have been performed under nonequilibrium and equi-
librium conditions; the former are inspired by an ideal experiment for the
verification of Fourier law (2), the latter stem from linear response theory
(see Section 4). Physical arguments suggest that both approaches should
yield the same results, although no rigorous proof of the equivalence of the
two definitions of thermal conductivity is available. This is why their com-
parison by numerical simulations is quite instructive.

Nonetheless, this kind of numerical simulations are quite heavy, so
that any trick for saving CPU time is worth to be applied. Since we are
interested in investigating thermodynamic limit properties we have to per-
form measurements keeping the ratio R=Ny�Nx constant. On the other
hand, there is a priori no reason for choosing R=1. In fact, we have
checked that reliable measurements of } can be obtained in lattices with
R<1. As an example, in Fig. 1 we show the dependence of } on Ny for
Nx=128 and for potential V2 , in the presence of thermal baths acting on
the boundary atoms at temperatures TL=1 and TR=0.5 (details are given
in the next subsection). After a sharp increase for small values of Ny

thermal conductivity } reaches a plateau already for Nyr20.
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Fig. 1. The thermal conductivity } versus Ny for the Lennard�Jones potential (13) with
Nx=128, TL=1, and TR=0.5.

This preliminary analysis has been performed for both potentials V1

and V2 in nonequilibrium and in equilibrium simulations: we have con-
cluded that R=1�2 is a reasonable compromise, valid in all of these cases.

3.1. Nonequilibrium Measurements of Thermal Conductivity

A straightforward way of measuring thermal conductivity } amounts
to simulate numerically a true experiment where the atoms at the left and
right edges of the 2d lattice are coupled with two thermal baths at different
temperatures TL and TR . This setting restricts the application of pbc to the
direction orthogonal to the temperature gradient: we impose pbc along the
y-axis, while the boundary atoms are coupled to a rigid wall through the
force link with the missing atoms in the x-direction.

Various models of thermal baths, either stochastic or deterministic
ones, axe at disposal. The results of numerical simulations reported in this
paper have been obtained by using the Nose� �Hoover deterministic
model.(30, 31) 3 It has two advantages with respect to stochastic algorithms:
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it can be easily implemented as an ordinary differential equation and it
reduces the residual thermal impedence effects at the lattice boundaries.

The equations of motion are

q�* ij = p� ij

p�* ij =&
�V
�q� ij

&($ i, 1+$i, Nx
) `ij p� ij

(14)

4̀ 1j =
1
%2 _ | p� 1j |

2

2TL
&1&

4̀ Nx j =
1
%2 _ | p� Nx j |

2

2TR
&1&

where $ is the Kronecker symbol. In practice, the integration scheme (14)
has been implemented by a standard fourth order Runge�Kutta algorithm.
Note that each boundary atom is coupled through the momentum equation
to its thermal bath variable `, that guarantees local thermal equilibrium at
temparature TL and TR on the left and right boundaries, respectively. The
parameter % is the response time of the heat bath, usually set to unit in our
numerical simulations. They have been performed starting from random
initial conditions and, first of all, checking if the system has approached a
stationary evolution. This can be obtained by verifying the equalities

|(J9 ) |=&� 1
Ny

:
Ny

j=1

`1j | p� 1j |
2�=&� 1

Ny
:
Ny

j=1

`Nx j | p� Nx j |
2� (15)

where the symbol (v) indicates the time average and the first term is the
average heat flux flowing through the chain, while the last two expressions
are the average heat fluxes flowing through the boundaries.

After some transient time a thermal gradient sets in along in the x-direc-
tion, due to the chosen boundary conditions. The time span necessary for
obtaining good convergence of the time averages increases with Nx . For
instance, O(105) integration steps are sufficient for Nx=16, while for
Nx=128 this time grows up to O(107).

The Fourier heat equation (2) predicts that a constant thermal
gradient should establish through the lattice in the x-direction and
(J (x))>0, while (J ( y))=0.

Despite in numerical simulations finite time averages never yield
exactly (J ( y)) =0, one finds that |(J9 ) | is very well approximated by
(J (x)). Some of the stationary temperature profiles obtained for different
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Fig. 2. Temperature profiles of the 2d FPU ;-model for different values of Nx .

values of Nx for potential V1 and V2 are shown in Figs. 2 and 3, respec-
tively. The values of the temperature Ti have been averaged also in space
over all the Ny atoms with abscissa x=i:

Ti=
1

Ny
:
Ny

j=1

Tij (16)

It is worth stressing that the local temperature Tij is a time-averaged quan-
tity (see Eq. (8)).

The lattice length has been rescaled to unit in order to verify the over-
lap of the profiles for increasing values of Nx : in both cases we observe a
good data collapse for Nx>32 indicating that the temperature gradient in
the thermodynamic limit vanishes as

{9 TitN &1
x (17)

In the FPU ;-model the temperatures of the thermal baths, TL=20
and TR=10, have been chosen for obtaining good ergodic properties of the
dynamics, i.e., fast relaxation to local equilibrium. Boundary effects of
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Fig. 3. Temperature profiles of the 2d Lennard�Jones 6�12-model model for different values
of Nx .

thermal impedence induced by the coupling with the thermal baths are
reduced for increasing values of Nx . The temperature gradient looks quite
close to a constant, but a more careful inspection shows that the profile has
a slight curvature. The effect is even more evident for the Lennard�Jones
model, whose temperature profiles converge to an s-shaped curve. In par-
ticular, thermal impedence at the boundaries seems to persist also in the
large Nx limit, despite the smaller values of TL=1 and TR=0.5, that
already guarantee ergodicity for this model. Such deviations from Fourier
law indicate that the kind of nonlinearity has influence on the boundary
effects and also on the temperature dependence of }. On the other hand,
we are interested in extracting the scaling of } with the system size Nx . It
can be obtained on the basis of Fourier law and Eq. (17) by plotting the
quantity (J (x))Nxt} versus Nx (see Figs. 4 and 5). For both 2d models
we find evidence of a logarithmic scaling of } with Nx .

3.2. Equilibrium Measurements of Thermal Conductivity

The nonequilibrium measurements of the heat transport coefficient }
have been made keeping TL and TR constant for increasing values of Nx .
The data collapse of the temperature profiles implies also that in the
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Fig. 4. Dependence of the thermal conductivity } on the system size Nx for the FPU ;-model;
TL=20 and TR=10. Statistical errors have the size of the symbols and the dotted line is the
best fit.

thermodynamic limit, Nx � �, the temperature gradient in the bulk of the
chain vanishes. Accordingly, for increasing values of Nx nonequilibrium
measurements are expected to reproduce better and better linear response
conditions. The Green�Kubo linear response theory(32) provides an alter-
native definition of } with respect to the one contained in Fourier law.
More precisely, a general expression of the heat conductivity tensor for a
solid contained in a volume V is given by the formula

}+&= lim
t � �

lim
V � �

V
KBT 2 |

�

0
(J (+)(t) J (&)(0)) dt (18)

where KB is the Boltzmann constant and the time correlation function of
the heat flux components along the + and & directions is averaged over
equilibrium states at temperature T ; the symbol (v) indicates now the
equilibrium ensemble average. Note that in order to avoid boundary effects
the correct definition of }+, & demands the right ordering of the two limits
in Eq. (18).

In our models of homogeneous 2d nonlinear solids the thermal con-
ductivity corresponds indifferently to anyone of the diagonal components
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Fig. 5. Dependence of the thermal conductivity } on the system size Nx for the Lennard�
Jones 6�12-model; TL=1 and TR=0.5. Statistical errors have the size of the symbols and the
dotted line is the best fit.

of the transport coefficient tensor defined in (18). In particular we have
chosen to consider

}#}xx= lim
t � �

lim
Nx � �

RN 2
x

KBT 2 |
t

0
(J (x)({) J (x)(0)) d{ (19)

where J (x) is the x-component of the space-averaged heat flux vector (11).
In numerical simulations one can compute the time correlation func-

tion C({)=(J (x)({) J (x)(0)) for finite, even if relatively large, values of Nx

and {. Boundary or finite-size effects have been controlled in numerical
simulations by a careful procedure. First of all we have computed C({) by
imposing on the system periodic boundary conditions. These are known to
provide the best convergence to thermodynamic limit properties.
Moreover, fluctuations have been smoothed by averaging over many dif-
ferent initial conditions: this is quite a crucial aspect for evaluating the
asymptotic behavior of C({). The main point, however, amounts to per-
form such calculations by increasing the system size Nx together with the
integration time {. There is no a priori reason for making { increase
proportionally to Nx . On the other hand, numerical measurements of the
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time correlation function of the local heat flux Ci ({)=(J0j ({) J ij (0)) show
that disturbances propagate with the velocity of sound through a nonlinear
medium (see also ref. 15):

c~ =- (1+:(E )) c (20)

where c is the velocity of sound due to the harmonic component of the
nonlinear potential; the renormalization factor

:(E )=
1
T

� $(H&E ) dr�
r2 $(H&E ) dr�

&1 (21)

can be computed by a proper microcanonical average where T is the reduced
temperature in units of the Boltzmann constant. It is worth stressing that
: introduces a dependence of c~ on the total energy, indicating its nonlinear
character.

These results indicate that the asymptotic behavior in time should be
equivalent to the asymptotic behavior in space through the relation
Nx=c~ {. On the other hand, this relation predicts also the occurrence of
finite size effects if, for a given value of Nx , the integration time { is taken
much larger than Nx �c~ . Actually, these effects have been efficiently observed
and controlled by considering the behavior of C(|), i.e., the Fourier trans-
form of C({), in the small frequency region. Curves of C(|) obtained for
different values of Nx superpose up to some value |� (Nx) B c~ �Nx , where
finite size effects make them depart from the common asymptotic behavior.

All of these features have been explicitely investigated and checked
numerically for potentials (12) and (13). For the sake of space, we do not
report here any detail of these numerical studies. Let us mention that the
same features were already observed in 1d models (see ref. 16).

Since the pioneering work of Alder and Wainwright, (33) similar mea-
surements have been usually performed as an application of the Green�
Kubo formula for identifying possible divergences of transport coefficients,
typical of low-dimensional fluid systems.(34) In particular, they have been
ascribed to the long-tails characterizing the asymptotic behavior of time
correlation functions, like C({).

Following the above sketched procedure, we have performed microca-
nonical numerical simulations at constant energy density, e, by eliminating
the thermal bath variables ` 's from Eq. (14). As in nonequilibrium mea-
surements, we have fixed the ratio R=Ny �Nx=1�2 for reducing CPU time.
Periodic boundary conditions have been imposed also in the x-direction, so
that the total momentum is conserved due to the restoration of translation
invariance in both directions. All simulations have been performed starting
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from random initial conditions with zero total momentum. The integration
scheme has been implemented by a fourth order Maclachlan�Atela sym-
plectic algorithm,(35) that is more appropriate than a Runge�Kutta one for
this kind of microcanonical simulations.

In order to reduce fluctuations, the heat flux time-correlation function
has been averaged also over sufficiently large set of random initial condi-
tions, typically a hundred, extracted from the microcanonical probability
distribution. For sufficiently large values of t, in both models (12) and (13)
C({) exhibits an asymptotic decay as {&1, that corresponds to a logarithmic
divergence with time t for the Green�Kubo integral. As an example, in
Fig. 6 we report the integral of C({), that we still denote with }, versus t
for the Lennard�Jones (6�12)-model. Despite very heavy simulations were
performed for averaging over initial conditions, in this example fluctuations
still persist for large values of t. This notwithstanding, numerical data are
compatible with the expected logarithmic divergence. In this sense one can
conclude that microcanonical equilibrium simulations used in the framework
of the Green�Kubo linear response theory agree with the result obtained by
the nonequilibrium simulations described in the previous section.

Fig. 6. The integral of the heat flux time-autocorrelation function, denoted by }, versus time
t for the LJ (6�12)-model with Nx=64 and e=1.5. The curve has been obtained by averaging
over 100 initial conditons. The dashed straight line has been drawn just for comparison with
numerical data.
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4. TRANSPORT IN STRONG AND WEAK CHAOTIC DYNAMICS

The conjecture that deterministic chaos is an efficient mechanism for
ergodic behavior has been extensively investigated by numerical experiments
in many degrees of freedom Hamiltonian systems, like those introduced in
Section 2. One of the main issues is that, for sufficiently high energy
density e, the time averages of most observables of thermodynamic interest
rapidly approach the expectation value predicted by equilibrium ensembles.
This notwithstanding, below a specific value eT��the so-called Strong
Stochasticity Threshold (SST ) (see refs. 25 and 26 and the references
therein contained)��the equilibration time may increase dramatically,
despite the persistence of deterministic chaos. It is not our aim, here, to
discuss why such a slow relaxation mechanism typically occurs in these
models. We just want to stress that their mild nonlinear character makes
them quite different from mathematically standard chaotic models like K-
or A-systems. In fact, the results obtained in ref. 15 show that regularities
are present even above the SST. More precisely, in a 1d FPU chain the
amplitudes of low-k Fourier modes are found to evolve like weakly
damped and forced harmonic oscillators. Dissipation and forcing epitomize
the complex nonlinear mechanism of energy exchange among the modes
and they are found to vanish in the limit k � 0.(16, 29) One can argue that
these can be only an effect induced by global, i.e., hydrodynamic, conserva-
tion laws of total momentum and energy. In this sense, such a behavior is
expected to be present in any space dimension d, although the possibilities
of energy exchanges among the modes are expected to become more and
more efficient for increasing values of d. These remarks suggest that in a
nonlinear model of a solid Fourier modes can be assimilated to a dense
fluid rather than to a diluted gas, as in Peierls' phonon theory.

4.1. Analytical Estimate of Anomalous Thermal Conductivity
Above the SST

Numerical simulations show that in the 2d models studied in this
paper low-k Fourier modes evolve like weakly damped and forced har-
monic oscillators. Actually, the power spectra of their amplitudes have the
same peculiar properties of such a dynamical behavior, that have been
shown for the FPU 1d system in ref. 23 (for the sake of space we do not
report here details of the numerical study). Relying upon this observations
we want to derive an analytical estimate of the thermodynamic limit
behavior of thermal conductivity } for 2d single-well anharmonic lattices.
In practice, here we explicitely extend to the 2d case the method introduced
in ref. 16 and described in detail for the 1d case in ref. 36.
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The amplitudes of the Fourier modes in a 2d square lattice have the
standard expression

Q9 k9 =
1

- NxNy

:
Nx

m=1

:
Ny

n=1

q� mne&i ((2?�Nx) kx m+(2?�Ny) ky n) (22)

where q� mn is the canonical space coordinate and the 2d wave-vector k9 has
components kx=&(Nx �2) } } } (Nx�2) and ky=&(Ny �2) } } } (Ny �2). We
consider an isolated hamiltonian model of the type (4); the equations
of motion expressed in terms of Fourier amplitudes and their canonically
conjugated momenta P9 k9 read

Q94 k9 =P9 k9
(23)

P94 k9 =&|2
k9 Q9 k9 + :

k9 {k9 $

F9 k9 k9 $

where |k9 obeys the dispersion relation4

|2
k9 =4 _sin2 ?kx

Nx
+sin2 ?ky

Ny & (24)

Fk9 k9 $ is the formal expression of the nonlinear interaction force between
modes k9 and k9 $.

Numerical experiments show that low-k Fourier modes behave like
slow dynamical variable, whose relaxation time scales are much longer than
those of high-k modes, that play the role of fast variables. This analogy
with hydrodynamic properties of dense fluids suggests the application of
SMT.(18, 19)

Since the hydrodynamic behavior is ruled by low-k modes, the first
step amounts to project the dynamics onto the subspace of slow variables
(Q9 s

k9 , P9 s
k9 ) by a proper projection operator

PsX=:
k9 _

(X } Q9 s*k9 )

( |Q9 s
k9 |2)

Q9 s
k9 +

(XP9 s*k9 )

( |P9 s
k9 |2)

P9 s
k9 & (25)

According to linear response theory the equations of motion can be casted
in the form:(36)

Q94 s
k9 =P9 s

k9

(26)
P94 s

k9 =&|~ 2
k9 Q9 s

k9 &|
t

0
1k9 (t&t$) P9 s

k9 (t$) dt$+R9 k9
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where R9 k9 =(1&Ps) P94 s
k9 is the effective force, that is related by the dissipa-

tion-fluctuation theorem to the memory kernel as follows:

1k9 (t) B (R9 k9 (t) } R9 k9 (0)) (27)

Note that in the projected equations of motion the harmonic frequency |k9

is renormalized to the energy dependent frequency

|~ k9 =|k9 - (1+:(E )) (28)

where :(E ) is defined in Eq. (21). As observed also in ref. 15 the projected
slow variables can be interpreted as ``nonlinear'' Fourier modes, whose
frequency is renormalized by anharmonic contributions. Numerical simula-
tions support this approach also thanks to the remarkable quantitative
agreement with the theoretical prediction (28).

The projected equations of motion have a clear theoretical interpreta-
tion, but they are practically useless for working out analytical calculations.
We have to introduce some simplifying hypotheses. We suppose that the
time scale of slow hydrodynamic variables can be unambigously separated
from the typical microscopic time scales: specifically, this amounts to
reduce the memory kernel 1 to a $ distribution and the fluctuating force
R9 to a stochastic force. By introducing an explicit complex-variable
representation of the mode amplitudes,

Q9 k9 =A9 k9 +iB9 k9

we rewrite the set of equations (26) in the approximate form of standard
stochastic equations:

A9� k9 +#k9 A94 k9 +|~ 2
k9 A9 k9 =!9 k9

(29)
B9� k9 +#k9 B94 k9 +|~ 2

k9 B9 k9 ='� k9

where #k9 can be interpreted as an effective dissipation coefficient, while
fluctuations are now assumed to be represented by gaussian white noise
processes:

(!9 k9 (t) !9 k9 $(t$)) B $k9 k9 $$(t&t$)
(30)

('� k9 (t) '� k9 $(t$)) B $k9 k9 $$(t&t$)

It is convenient to introduce the scalar variable

Wk9 =A94 k9 } B9 k9 &A9 k9 } B94 k9 (31)
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that satisfies the Langevin type equation:

W4 k9 =&#k9 Wk9 +`k9 (32)

where

(`k9 (t) `k9 $(t$)) B ( |A9 k9 |2+|B9 k9 |2) $k9 k9 $$(t&t$)

According to the definition (11) the average heat flux vector can be
thought as the sum of a harmonic term and an anharmonic one, J9 H and J9 A ,
respectively. The harmonic term is obtained by considering only the forces
given by the quadratic part of the interaction potential: simple calculations
show that its components can be written in the form:

J (x)
H = :

kx , ky

ckx
|kx

Wk9

(33)
J ( y)

H = :
kx , ky

cky
|ky

Wk9

where

|kx, y
=2 } sin

?kx, y

Nx, y } , ckx, y
=

Nx, y

?

d|kx, y

dkx, y

In close analogy with the renormalization of the effective frequency of slow
variables, it can be shown that the leading contribution to J9 A , stemming
from the anharmonic part of the interaction potential, is proportional to
J9 H through an energy (and also model) dependent factor C(E ), i.e.,
J9 A=C(E ) J9 H . For instance, the expression of C(E ) in the FPU ;-model
(12) is

1
Nx Ny

:
k9

|2
k9 ( |A9 k9 |2+|B9 k9 | 2) (34)

Summarizing, the components of the average heat flux vector can be
expressed in general by the proportionality relations

J (x) B :
kx , ky

ckx
|kx

Wk9

(35)
J ( y) B :

kx , ky

ckx
|ky

Wk9
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Assuming the validity of the generalized equipartiton theorem

|2
k9 ( |Ak9 |2)=|2

k9 ( |Bk9 |2) =U(E ) (36)

where U(E ) is a function of the energy E, and using the solution of (32),
one can obtain an analytical estimate of the heat flux time-correlation
function present in the Green�Kubo integral (18):

(J i
H(t) J i

H (0))tU(E ) :
k9

c2
ki

e&#k9 t
t|

2?

0
d% |

?

0

dk
(2?)2 kc2(k cos %) e&#(k) t

(37)

where the last expression is obatined by assuming that in the thermo-
dynamic limit the summation can be approximated by an integral.

The explicit dependence of the dissipation coefficient # on the modulus
of the wave-vector k9 is provided by SMT.(18, 19) Specifically, it predicts that
the time-correlation functions of hydrodynamic modes decay in time as
follows:

G(k, t)&e&|(k) t (38)

where the |(k) are complex generalized frequencies ruling the oscillatory
and relaxation behavior of the hydrodynamic modes. For 2d homogeneous
systems they depend just on k=|k9 | and their explicit expression in the
hydrodynamic limit, k � 0, is found to be

|(k)& ic~ k+&k2 ln k (39)

where c~ is the velocity of sound in the homogeneous medium and the
second addendum of the r.h.s. is the dissipation term #(k)=Re(|(k)).(18, 19)

Substituting into Eq. (37) and retaining only the leading contribution to
the function c(k cos %) in the limit k � 0, one obtains the estimate

(J i
H(t) J i

H (0)) B |
?

0

dk
2?

ke&tk2 ln k
t

1
t
+O \ 1

t ln t+ (40)

Accordingly, the heat conductivity } is predicted to diverge as ln t in the
t � � limit in 2d lattices.

It is worth stressing that SMT predicts also that #(k)tk5�3 in 1d systems,
yielding a diverging heat conductivity }tN 2�5 in the thermodynamic limit.
The very good agreement with numerical experiments (see ref. 16) strengthen
the conjecture that the anomalous properties of transport coefficients in
nonlinear lattice models stems from the hydrodynamic nature of low-k
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effective modes. Said differently, total energy and momentum conservation
laws impose on models with single-well potentials a dispersion relation
yielding a subdiffusive behavior of the energy exchange among these modes
and, consequently, ill-defined transport coefficients. On the other hand,
SMT predicts that in 3d the Green�Kubo integral is convergent so that }
becomes a well defined quantity.

This dependence on the space dimension and the generality of predic-
tions (at least for what concerns the class of single-well nonlinear potentials)
make this piece of theory quite elegant and physically sound.

4.2. The Effect of Weak Chaos on Anomalus Transport

All the numerical simulations presented in Section 3 have been performed
in the strong chaotic regime of the dynamics. In this case ergodic behavior
occurs quite rapidly on the microscopic time scale, with the exception of
hydrodynamic modes, whose slow relaxation, due to macroscopic conser-
vation laws, rules the observed divergence of transport coefficients. In the
above theoretical treatment this corresponds to the assumption that time-
correlation functions can be estimated on the basis of equilibrium ensemble
averages.

On the other hand, we know that below the SST relaxation to equi-
librium may slow-down dramatically for most of the physically interesting
observables. According to the results reported in ref. 26 the heat flux is
expected to belong to this class of observables. Then, we expect also that
in such a dynamical regime the transport mechanism can be significantly
modified.

We have checked this conjecture by considering model (13), whose
SST has been estimated(24) at a value of the energy density

eSST=0.3 (41)

in the units adopted in this paper. We have performed numerical simula-
tions with thermal baths at temperature TL=0.1 and TR=0.05 for dif-
ferent values of Nx verifying the data collapse of the temperature profiles.
Following the same approach described in Section 3.1 we have estimated
the dependence of the thermal conductivity on Nx . We find evidence of a
power-law divergence

}tN :
x (42)

with :=0.77 (see Fig. 7). Note that below the SST the exponent : is a
function of the energy density e.
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Fig. 7. The thermal conductivity } versus the system size Nx with TL=0.1 and TR=0.05 for
the LJ (6�12)-model. The dotted line is a best fit for the power law }tN :

x yielding
:&0.77\0.03.

The power law divergence of } below the SST is confirmed by the
numerical estimate of the integral of the correlation function C({), still
denoted by }. In Fig. 8 we compare its dependence on time t for e=0.1 and
for e=3.0, below and above the SST, respectively. The comparison of the
two curves in a linear versus logarithmic scale shows that the asymptotic
behavior of }(t) is completely different in the two chaotic dynamical
regimes. In particular, for e=3.0 we recover a logarithmic divergence,
while for e=0.1 we find a power law divergence }(t)tt: with :=0.75.

For what concerns the interpretation of this last result, one has to
observe that for a sufficiently long time equilibrium conditions will be even-
tually approached. The asymptotic time dependence of the Green�Kubo
integral should turn to the logarithmic growth on any finite system. The
relevance of this superanomalous effect could be established only by
evaluating the dependence of the relaxation time on the system size.
Estimates obtained for relatively small size systems seem to indicate that
the crossover time between the power-law and the logarithmic behavior
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Fig. 8. The integral of the heat flux time-autocorrelation function, }, versus time t for the
LJ (6�12)-model with Nx=64 below (e=0.1) and above (e=3.0) the SST.

of the Green�Kubo integral icreases more than linearly with the system
size Nx . On the other hand, as we have often pointed out along this paper,
numerics can provide crucial insight for the understanding of these
phenomena, but cannot be assumed as a proof of anything. Since this effect
might have very interesting physical consequences we hope to work out in
the near future an analytic approach for describing the superanomaly of
transport coefficients below the SST.

5. CONCLUSIONS AND PERSPECTIVES

The presence of anomalous thermal conductivity in 2d lattices of
atoms coupled by nonlinear nearest-neighbour single-well potentials has
been verified by numerical experiments and analytical estimates. According
to SMT, the effect of dimensionality is found to make the thermodynamic
limit powerlaw divergence of 1d models turn to a logarithmic divergence of
2d models, thus confirming the soundness of the general theoretical
framework worked out to interpret such anomalous properties emerging
from strongly chaotic dynamics.(16, 36) It is also worth mentioning that in
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this dynamical regime 3d models are predicted to exhibit normal transport
properties, i.e., finite thermal conductivity.

In this paper we have also, pointed out that a superanomalous
behavior ruled by a power-law divergence of the thermal conductivity,
seems to characterize transport properties of 2d models below the SST.
Such a behavior has been observed also in 1d systems where the crossing
of the SST corresponds to an increase of the power from the value 2�5
towards the limit value 1, that is expected to be approached for vanishing
energy densities (i.e., in the harmonic limit). Here we have decided to
report just the results for 2d systems, where the comparison between the
power-law and the logarithmic divergence stresses the effect of the
extremely slow relaxation mechanism already observed almost half a cen-
tury ago in the seminal numerical experiment by E. Fermi, J. Pasta and
S. Ulam.(37)

At present we are not able to conclude just on the basis of numerical
simulations if superanomalous transport is a finite size effect or an
asymptotic property, that could even concern 3d systems. Also in this case,
the construction of a suitable theoretical approach would greatly help in
answering to this interesting question.
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